PEM POCUS Series: Intussusception | Learn about it and test your skills on ALiEMU

Read this tutorial on the use of point of care ultrasonography (POCUS) for pediatric intussusception. Then test your skills on the ALiEMU course page to receive your PEM POCUS badge worth 2 hours of ALiEMU course credit.

 


PATIENT CASE

Johnny is a 2-year-old boy who comes into the emergency department for abdominal pain for the last day. His parents are concerned that he has been having intermittent abdominal pain and has seemed very tired all day. Parents deny bloody stool.

On arrival, his vital signs are:

Vital SignFinding
Temperature36.9C
Heart rate110 bpm
Blood pressure97/50
Respiratory rate22
Oxygen saturation (room air)99%

He is tired appearing, and his abdominal exam is soft but diffusely tender. Given his intermittent abdominal pain, you decide to perform an intussusception point of care ultrasound (POCUS) exam.

ULTRASOUND TECHNIQUE

Intussusception is when one part of the bowel telescopes, or gets stuck, in another part of the bowel. Typically intussusception refers to ileocolic intussusception where the ileum becomes stuck in the colon. To perform the ultrasound, start in the right lower quadrant and trace the colon. See below for a step-by-step technique.

intussusception
Overview of sequential ultrasound transducer positioning on the anterior abdomen to assess for intussusception

Technique

  • The patient should be positioned supine.
  • To aid in comforting the child, the child can be positioned supine in the parent’s lap while undergoing the scan. Having the parent or another provider offer a toy, book, or phone/tablet to distract the child during the scan can also help ease anxiety.
  • Begin in the right lower quadrant (RLQ), using a high frequency linear probe with the probe marker to patient’s right.
  • First, identify the anatomical landmarks in the RLQ (see ultrasound images below):
    • Psoas muscle (green) laterally
    • Right iliac vessels (blue)
    • Abdominal muscles (red)
    • Bladder (yellow) medially

Ultrasound image: Anterior Abdomen (RLQ) View

intussusception RLQ ultrasound

Ultrasound Image: Anterior Abdomen RLQ (More Medial) View

PEM POCUS intussusception RLQ More Medial
  • Perform graded compression, with slow steady pressure to displace bowel gas
  • Follow the colon from the RLQ to right upper quadrant (RUQ) until the liver (purple) and gallbladder are identified

Ultrasound Image: Anterior Abdomen (RUQ) View

PEM POCUS intussusception RUQ
  • Rotate the probe marker to patient’s head and scan the entire length of the transverse colon.
  • Rotate the probe marker back to patient’s right and scan the entire length of the descending colon, making sure to scan all four quadrants.
  • Save representative video clips and still images of each quadrant.
  • If an intussusception is found, measure its diameter in transverse view and note in which quadrant(s) it is found.
  • At the end of scan, if you have found an intussusception, re-image the abdomen to make sure it was not transient.
  • The provider should maintain awareness of the patient’s comfort throughout the scan.

INTUSSUSCEPTION CLASSIC FINDINGS

Normal (no intussusception)

https://www.youtube.com/watch?v=6TYEo1jZUwU&feature=emb_title
Normal: There is no target or sandwich sign, but rather just folded normal bowel. (To replay, press circular arrow in bottom left corner)

Abnormal findings

  • Look for findings of a sandwich sign (or pseudo-kidney sign) in the longitudinal view and target sign (or donut sign) in the transverse view.
  • If visualized, measure the diameter of the intussusception in short axis (transverse) and note which in which quadrant(s) it is located.

Sandwich Sign

https://www.youtube.com/watch?v=MK3WvUbdsgM&feature=emb_title
Anterior abdomen ultrasound: Intussusception – Presence of a sandwich sign (long axis view) and target sign (short axis view)

Target Sign

Intussusception diameter ultrasound
Measurement: The diameter of an intussusception (i.e., target sign) in transverse view involves measuring the distance from outer wall to outer wall.

Additional Anterior Abdominal Ultrasound Videos

Pro Tip
It can be difficult to distinguish intussusception of the small bowel-small bowel (i.e., when the ileum or part of the small bowel telescopes into itself) versus ileocolic (i.e., when the ileum becomes telescopes into the colon). The former often does not require a procedure for reduction, while the latter typically does. If the target sign diameter is <2 cm and transient, a small bowel-small bowel intussusception should be suspected. The length of the intussusception, or how many quadrants are involved, can also be measured for an idea of how much bowel is involved.

Small bowel-small bowel intussusception

https://www.youtube.com/watch?v=Po7wef5sVFw&feature=emb_title
Small bowel-small bowel intussusception – Note the small size of the target lesion. Because the ultrasound video scans to a depth of 3.3 cm (see bottom right side of the screen), the target sign appears to be approximately only 1 cm in diameter.

 

https://www.youtube.com/watch?v=AFrdsZFIV_U&feature=emb_title
Small bowel-small bowel intussusception – There is a target sign, but it is small (<2 cm) with a small fat (white) core.

 

Ileo-colic intussusception

https://www.youtube.com/watch?v=Iw3UQfLBmPo&feature=emb_title
Ileo-colic intussusception with classic target sign – Note the lymph nodes (black) inside the mesenteric fat (white) in the center of the target.

FACTS and LITERATURE REVIEW

Mimickers of Intussusception

There are additional pathologies that can be mistaken for intussusception such as an intussuscepted appendix, appendicitis surrounded by abscess, and Meckel’s diverticulum, which are beyond the scope of this course. Any concerning finding for intussusception should be followed by a confirmatory study by the radiology department.

Benefits of intussusception POCUS scans

Although few studies have looked at point of care ultrasonography (POCUS) for intussusception, the existing studies have shown excellent test characteristics and a decreased length of stay with using POCUS.

Two studies assessed the test characteristics of the intussusception POCUS.

PublicationStudy MethodologySensitivitySpecificity
Riera et al. (2012)​1​This journal publication was a prospective study of 82 patients who underwent POCUS by pediatric emergency medicine (PEM) providers. The gold standard was a comprehensive radiology ultrasound.85%97%
Trigylidas et al. (2017) ​2​This abstract reported a retrospective study of 105 intussusception POCUS scans by PEM providers. The gold standard was either a direct radiology over-read of the POCUS scans or a radiology department ultrasound.96.2%92.6%

In terms of ED length of stay (LOS), Kim et al. (2017) reported that after the introduction of an intussusception POCUS scanning protocol, the LOS decreased by >200 minutes.​3​

Differentiating small bowel-small bowel from ileocolic intussusception

In general, true ileocolic intussusceptions are:

  • Found on the right side of the abdomen
  • >2 cm in diameter
  • Have mesenteric fat (which is white) and lymph nodes in the center
  • Do not self resolve

There have been studies looking at distinguishing small bowel-small bowel from ileocolic intussusception. These, however, have been radiology-based and not POCUS studies, making generalizability to the ED setting challenging. Thus, if there is a concern for an intussusception, a radiology ultrasound should be ordered.

One small study with 27 patients by Wiersma et al. (2006) found that small bowel-small bowel intussusceptions had a smaller mean diameter and length compared to ileocolic intussusceptions.​4​

Type of intussusception# of patients and scansMean diameter (range)Mean length (range)Location
Small bowel-small bowel10 patients, 11 scans1.5 cm (1.1-2.5 cm)2.5 cm (1.5-6 cm)Distributed throughout the abdomen (6 paraumbilical, 2 RUQ, 2 RLQ, 1 LLQ)
Ileocolic14 patients, 16 scans3.7 cm (3-5.5 cm)8.2 cm (5-12.5 cm)All on right side of abdomen

Lioubashevsky et al 2013​5​ had a larger sample size (174 patients) with similar findings. The authors also measured the ratio of the inner fat core to the intussusception outer wall and identified the presence or absence of lymph nodes within the lesion.

Type of Intussusception# of patientsMean diameter (range)Mean length (range)Ratio of fat core to the intussusception outer wall% of patients with lymph nodes in the lesion
Small bowel-small bowel57 patients1.4 cm 
(1.1-2.5 cm)
2.5 cm 
(1.5-6 cm)
<114%
Ileocolic143 patients2.6 cm 
(1.3-4 cm)
8.2 cm 
(5-12.5 cm)
>189.5%

References [click to expand] +

  1. Riera A, Hsiao A, Langhan M, Goodman T, Chen L. Diagnosis of intussusception by physician novice sonographers in the emergency department. Ann Emerg Med. 2012;60(3):264-268. PMID 22424652
  2. Trigylidas TE, Kelly JC, Hegenbarth MA, Kennedy C, Patel L, O’Rourke K. 395 Pediatric Emergency Medicine-Performed Point-of-Care Ultrasound (POCUS) for the Diagnosis of Intussusception. Annals of Emergency Medicine. October 2017:S155. DOI
  3. Kim J, Lee J, Kwon J, Cho H, Lee J, Ryu J. Point-of-Care Ultrasound Could Streamline the Emergency Department Workflow of Clinically Nonspecific Intussusception. Pediatr Emerg Care. September 2017. PMID 28926507
  4. Wiersma F, Allema J, Holscher H. Ileoileal intussusception in children: ultrasonographic differentiation from ileocolic intussusception. Pediatr Radiol. 2006;36(11):1177-1181. PMID 17019589
  5. Lioubashevsky N, Hiller N, Rozovsky K, Segev L, Simanovsky N. Ileocolic versus small-bowel intussusception in children: can US enable reliable differentiation? Radiology. 2013;269(1):266-271. PMID 23801771

Case Resolution

You place a linear, high-frequency probe on the right side of the patient’s abdomen. You perform a bedside ultrasound scan, viewing transversely and longitudinally through the upper and lower abdomen. You observe the following:

https://www.youtube.com/watch?v=tQRLWPc8Heo

What is the diagnosis?

This is an intussusception!

The intussusceptum (red) is the part of the bowel that has telescoped into the intussuscipiens (blue). When ileum becomes trapped in the colon, this can lead to ischemia and necrosis over time. This is what causes the classic “currant jelly stools”, which are bloody stools.

Tip: The classic triad of colicky abdominal pain, palpable mass and bloody stool are present in less than 50% of patients, and intussusception should be suspected for patients with vomiting, abdominal pain, and/or lethargy.​1​

Hospital course

Johnny underwent an air enema reduction in the Radiology department, which successfully reduced the ileocolic intussusception.

Reference

  1. Daneman A, Alton D. Intussusception. Issues and controversies related to diagnosis and reduction. Radiol Clin North Am. 1996;34(4):743-756. PMID 8677307.

The PEM POCUS series was created by the UCSF Division of Pediatric Emergency Medicine to help advance pediatric care by the thoughtful use of bedside ultrasonography.

Learn more about bedside ultrasonography on the ALiEM Ultrasound for the Win series

By |2021-05-10T18:03:07-07:00May 10, 2021|Gastrointestinal, PEM POCUS, Ultrasound|

IDEA Series: Handheld Ultrasound for Emergency Medicine Residents Rotating on Cardiology Services

US System

Point-of-care ultrasound (PoCUS) has become an essential skill that emergency medicine (EM) residents learn during their training [1]. Accordingly, most EM programs schedule a block early in residency dedicated to obtaining and interpreting high-quality PoCUS images. Likewise, the ability to efficiently diagnose and manage acute cardiovascular pathologies is a critical aspect of EM, and most EM residents also rotate on a cardiology service to develop these skills. Despite evidence that PoCUS improves the ability of both cardiologists and non-cardiologists to quickly diagnose cardiac disease at the bedside, integration of this relatively novel technology on cardiology services is often limited by lack of PoCUS availability as well as lack of a convenient platform to share recorded images [2]. Equipping EM residents on cardiology rotations with a portable, handheld ultrasound (US) system (Figure 1. Philips Lumify handheld US system with tablet) can enhance the learning of echocardiography acquisition and interpretation while simultaneously providing cardiology teams with clinically actionable information [3]. In addition to improving patient care, performing and interpreting PoCUS from the lens of a cardiologist is a simple yet innovative way to solidify the skills that are crucial to becoming an excellent bedside echocardiographer.

(more…)

By |2021-02-03T21:14:52-08:00Feb 5, 2021|IDEA series, Medical Education, Ultrasound|

SAEM Clinical Image Series: What Lies Beneath?

abscess

A 35-year-old male with a history of diabetes and pericarditis, status post pericardiectomy 3 years ago, presented with a painful lesion on his anterior chest wall. One month prior, the patient reported a bump at his sternotomy scar base which extruded a piece of suture when squeezed and subsequently healed. Two days ago, the patient developed diffuse right-sided chest pain. During the past 24 hours, an enlarging, erythematous, painful, non-draining lesion developed at the base of his scar. He reports subjective fever. He denies shortness of breath, exertional chest pain, nausea, and vomiting.

(more…)

Ultrasound for the Win! 18M with Acute Shoulder Injury #US4TW

Ultrasound for the win

Welcome to another ultrasound-based case, part of the “Ultrasound For The Win!” (#US4TW) Case Series, where bedside ultrasound changed the management or aided in a diagnosis. In this case, an 18-year-old man presents with acute shoulder pain after an injury.

Learning Objectives

  1. List the differential diagnosis for a patient presenting with shoulder pain.
  2. Discuss the role of the shoulder point-of-care ultrasound (POCUS) and how to correctly perform the scan using a posterior approach.  
  3. Discuss the prevalence, diagnostic approach, sonographic findings, ED management, and disposition of a shoulder subluxation.
  4. Discuss recent literature regarding shoulder POCUS and its utility and value in the ED, particularly in shoulder dislocations.

Case Presentation

An 18-year-old male with no past medical history presents to the ED with acute-onset left shoulder pain that occurred just prior to arrival. The patient was involved in a physical altercation in which his left arm was pulled. He felt a “pop” followed by pain in the shoulder. The patient reports that his arm was pulled again a second time, further worsening the pain. He complains of persistent limited and painful range of motion (ROM) of the left shoulder. He has no history of prior shoulder dislocations, fractures, or other musculoskeletal injuries.

On physical examination, the patient’s left shoulder has limited active ROM due to pain but is able to perform abduction of more than 90 degrees, and internal and external rotation of the affected joint. There is tenderness to palpation of the anterolateral aspect of the left shoulder but no redness, significant swelling, or any obvious deformities.

Vitals

  • BP 110/65 mmHg
  • HR 85 bpm
  • RR 20 breaths/min
  • SpO2 95% on room air
  • Temp 36.4⁰C

Differential Diagnosis

  • Shoulder dislocation
  • Glenohumeral joint (GHJ) effusion
  • Shoulder subluxation / GHJ instability
  • Acromioclavicular (AC) joint injury
  • Shoulder sprain/strain
  • Proximal humerus fracture
  • Clavicle fracture
  • Scapular fracture
  • Rotator cuff tear
  • Biceps or triceps tendon injuries

Our Clinical Approach

Upon physical examination, there was a low clinical suspicion for shoulder dislocation, given the patient’s decent ROM. The clinical presentation suggested a shoulder sprain versus a partial tear of the rotator cuff muscles versus GHJ instability or subluxation, which may be secondary to above.

While an x-ray would be the usual initial imaging modality of choice in a patient presenting to the ED with a musculoskeletal injury, there can be delays in obtaining imaging depending on patient volumes, staffing, and resources. Given this, a bedside POCUS of the shoulder was performed using a posterior approach in order to quickly rule out a shoulder dislocation and expedite patient care.

ultrasound shoulder external rotation
Figure 1 – The affected left shoulder POCUS in an externally rotated position

ultrasound shoulder internal rotation
Figure 2 – The affected left shoulder POCUS in an internally rotated position, revealing a left shoulder subluxation or partial dislocation of the glenohumeral joint

shoulder subluxation POCUS ultrasound
Figure 3 – Video clip reveals the left humeral head sliding in and out of the glenoid fossa while the patient rotates the joint externally and internally, confirming the diagnosis of shoulder subluxation.

Diagnosis: Shoulder Subluxation

  • Also known as shoulder or glenohumeral joint partial dislocation, or glenohumeral joint instability.
  • Occurs when the humeral head partially slides (or “dislocates”) in and out of place with range of motion at the GHJ. It is usually associated with trauma to the shoulder and injury to the shoulder ligaments. It can also occur in the absence of trauma, in which case it is typically associated with congenital instability of the GHJ.
  • The role of the ED physician involves ruling out a shoulder dislocation, concomitant fractures, or neurovascular injuries. Usually, no reduction attempt is required (unless the diagnosis is not certain and there is concern for an actual dislocation), and the patient can be discharged home with a shoulder sling or immobilizer as well as a plan for analgesia, such as anti-inflammatories.
  • Any patient with shoulder subluxation should be referred to outpatient orthopedic follow up as they will likely need further imaging and evaluation for both non-operative and surgical options for definitive treatment.
Figure 4 – The posterior approach for shoulder POCUS

Shoulder POCUS: The Posterior Approach

  • Position yourself behind the patient with the ultrasound machine positioned in front of the patient.
  • Locate the scapular spine with palpation.
  • Using the curvilinear probe, place the probe on top of the scapular spine in a transverse plane with the probe orientation marker pointing toward to the patient’s left (Fig. 4). Identify the scapular spine as a hyperechoic line with posterior shadowing. Note the deltoid and the infraspinatus muscle above the scapular spine.
  • Slide the probe laterally along the scapular spine, towards the GHJ. You will start to see the glenoid fossa (which may be difficult to visualize in a non-dislocated shoulder) followed by the humeral head, seen as a round hyperechoic structure with posterior shadowing (Fig. 5).
    • To optimize your image, you should position the glenoid fossa and GHJ in the center of the screen. You will see the scapular spine on one half of the screen and the humeral head on the other half. We recommend you adjust the depth for optimal visualization of the GHJ.
    • Remember that if you are scanning the patient’s left shoulder (as in the featured case – Figs. 1, 2), you will see the humeral head on the left side of the screen and the scapular spine on the right side, and vice versa if you are scanning the right shoulder (Figs. 4, 5).
    • With a posterior approach, an anterior dislocation is identified as the humeral head is displaced inferiorly on the screen (i.e. away from the probe) (Fig. 6). A posterior dislocation is identified as the humeral head is displaced towards to the top of the screen (i.e. towards the probe).

Figure 5 – POCUS showing a normal right shoulder with identified structures.

ultrasound anterior shoulder dislocation US4TW
Figure 6 – POCUS showing a right shoulder anterior dislocation

Figure 7 – Clip showing a normal right shoulder being rotated externally and internally

Shoulder POCUS Tips

  1. Have the patient slowly rotate the shoulder internally and externally to more easily identify the humeral head (Fig. 7). This will be especially useful to aid in identifying structures in patients with more musculature and/or a larger body habitus.
  2. If you have any doubt and/or you’re not convinced that the findings are normal or not, scan the unaffected shoulder and compare both sides.
  3. With the same posterior approach mentioned above, you can perform an ultrasound-guided GHJ lidocaine injection. Remember this procedure should be sterile! Prep the skin with chlorhexidine, use sterile gloves, sterile gel, and probe cover. You will likely need a spinal needle to reach the GHJ. Inject 15-20 cc of 1% lidocaine into the GHJ. Performing intra-articular anesthesia has been described as an effective pre-reduction approach for analgesia with no significant difference in successful reduction rates or pain during or post-reduction; fewer adverse effects; and decrease overall ED length of stay [1].
  4. In the case of shoulder dislocations, obtain a post reduction x-ray (particularly if the pre-reduction x-ray was not performed) to evaluate for concomitant fractures and to confirm reduction. However, re-scanning the shoulder immediately post-reduction will not only confirm reduction in real time, but also minimize time delays if the shoulder was not successfully reduced and will need a re-attempt of the reduction. This approach will be of more value when doing procedural sedation, as you can potentially re-attempt the reduction while the patient is still sedated. Procedural sedation in a busy ED is a very time and resource-consuming procedure and doing a post-reduction POCUS is a great way to maximize efficiency in utilization of ED resources.

Shoulder POCUS Literature Review

POCUS is a quick and highly accurate way to diagnose shoulder dislocations and subluxations while minimizing length of stay in the ED.  

  • Secko et al [2] – Study of 65 patients that demonstrated a sensitivity and specificity of 100% (95% CI 87-100%) and 100% (95% CI 87-100%), respectively, for the diagnosis of shoulder dislocations. The “time from triage to diagnosis via POCUS” was a stunning 19 seconds in comparison to 43 minutes of “time from triage to diagnosis via X-ray”. Of note, the images in this study were obtained by ultrasound fellowship trained physicians only.
  • Gottlieb et al [3] – Meta-analysis of 306 dislocations. POCUS was 99.1% sensitive (95% CI 84.9-100%) and 99.9% specific (95% CI 88.9-100%) for the diagnosis.

The sooner you attempt reduction, the better your chances at success!

  • Kanji et al [4] – Time from “injury to 1st reduction attempt” and “ED arrival to 1st reduction attempt” – both were found to be independent predictors of a higher reduction failure rate (OR=1.07, 95% CI 1.02-1.13; OR=1.19, 95% CI 1.05-1.34). Every interval of 10 minutes increased the odds of a failed reduction attempt by 7% and 19%, respectively, for each group.

Disposition and Case Conclusion: Glenohumeral Subluxation

The patient was placed in a shoulder sling and discharged home with instructions to take ibuprofen as needed for pain. He was instructed to rest the shoulder for the next few days and follow up with his primary care physician with consideration of physical therapy for shoulder strengthening exercises. Lastly, he was referred for outpatient orthopedic followup, as he may need further imaging (i.e. shoulder CT scan or MRI) and potential surgical intervention, if the symptoms persist.

Take Home Points

  • Shoulder POCUS is a valuable tool that forms part of the ED physician armamentarium to tackle the diagnosis, ED management, and timely disposition of shoulder injuries.
  • Shoulder subluxation is a musculoskeletal injury that can be reliably assessed with POCUS. The ED management consists of ruling out fractures and dislocations, pain management, shoulder movement restriction with shoulder slings or immobilizers, patient education, and adequate outpatient referral to orthopedics or physical therapy.
  • Recently published literature illustrated the benefits and effectiveness of shoulder POCUS to reliably diagnose shoulder dislocations, assist in GHJ intra-articular joint injections, and confirm reductions in real time.

Edited by Dr. Jeffrey Shih, Ultrasound For The Win (US4TW) Series Editor

  

References

  1. Wakai A, O’Sullivan R, McCabe A. Intra-articular lignocaine versus intravenous analgesia with or without sedation for manual reduction of acute anterior shoulder dislocation in adults. Cochrane Database Syst Rev. 2011;(4):CD004919. Published 2011 Apr 13. doi:10.1002/14651858.CD004919.pub2. PMID: 21491392
  2. Secko MA, Reardon L, Gottlieb M, et al. Musculoskeletal Ultrasonography to Diagnose Dislocated Shoulders: A Prospective Cohort. Ann Emerg Med. 2020;76(2):119-128. doi:10.1016/j.annemergmed.2020.01.008. PMID: 32111508
  3. Gottlieb M, Holladay D, Peksa GD. Point-of-care ultrasound for the diagnosis of shoulder dislocation: A systematic review and meta-analysis. Am J Emerg Med. 2019;37(4):757-761. doi:10.1016/j.ajem.2019.02.024. PMID: 30797607
  4. Kanji A, Atkinson P, Fraser J, Lewis D, Benjamin S. Delays to initial reduction attempt are associated with higher failure rates in anterior shoulder dislocation: a retrospective analysis of factors affecting reduction failure. Emerg Med J. 2016;33(2):130-133. doi:10.1136/emermed-2015-204746. PMID: 26113487

SAEM Clinical Image Series: Knee Pain

knee

A fifty-six-year-old male with a past medical history of legal blindness and remote right quadricep tendon rupture presents to the emergency department via emergency medical services (EMS) after a mechanical fall, complaining of left knee pain. According to the patient, he is in his regular state of health and was walking with his cane when he had a mechanical fall on the sidewalk after tripping on an unknown object and falling onto his left knee.

The patient did not hit his head, did not lose consciousness, and has no head, neck, or back pain. The patient states that he fell directly onto his knee and felt a popping upon hitting the ground, and remembers all events surrounding the incident. The patient was not ambulatory prior to coming to the emergency department.

(more…)

IDEA Series: Big Screen Ultrasound in Resuscitation Bays

Bedside ultrasound (US) often plays a crucial role in medical and trauma resuscitations in the emergency department (ED) [1]. Performing and interpreting bedside US studies such as the Extended Focused Assessment with Sonography for Trauma (E-FAST) during traumas or echocardiography during medical resuscitations are key skills for emergency medicine residents to learn during their training and adopt into clinical practice [2]. During trauma resuscitations timely and efficient dissemination of critical information is paramount. Information obtained via bedside US can be critical in determining further clinical actions (need for urgent thoracostomy for a pneumothorax, need for urgent exploratory laparotomy in a hypotensive patient with free fluid in the abdomen, etc.) through shared decision making between ED and trauma teams [3]. Information obtained via bedside US, however, is often difficult to convey during resuscitations given crowded rooms, simultaneous interventions, and limited viewing of the US screen. For ED and trauma providers wishing to better understand the utility of bedside US during resuscitations and how this powerful tool can change clinical management, a clearly visualized representation of what is displayed on the US screen could provide an ideal learning opportunity.

(more…)

By |2020-07-17T10:35:07-07:00Jul 24, 2020|IDEA series, Medical Education, Ultrasound|

ALiEMU New Course: Pediatric Ultrasound-Guided Peripheral IV Access

ALiEMU peripheral IV access pediatric EM ultrasoundDid you know that the ALiEMU learning management platform has courses in addition to the AIR Series? We just published the third installment of the pediatric point-of-care ultrasound (POCUS) series, which focuses on peripheral IV access using ultrasonography. Do you use the traditional transverse, transverse with dynamic needle tip visualization, or longitudinal ultrasound technique?

(more…)

By |2020-04-27T14:42:47-07:00May 10, 2020|ALiEMU, Pediatrics, Ultrasound|
Go to Top