The Febrile Infant: Incorporating the 2021 American Academy of Pediatrics guidelines

Can you trust a febrile infant?

“No” has been, and continues to be, the resounding answer over the last 40 years as researchers and clinicians work to determine the optimal evaluation and management of the well-appearing young febrile infant [1].

The goal remains to identify infants with bacterial infections in this at-risk cohort of patients while also considering the balance of cost-effectiveness on a population scale and the potential for iatrogenic harm with evaluation such as unnecessary lumbar punctures, unnecessary antibiotics, and unnecessary hospitalization. Fortunately, bacteremia and bacterial meningitis in this age group are uncommon [2]. Unfortunately, delayed or missed diagnosis can be devastating [1-3].

In the most recent 2021 Clinical Practice Guideline, the American Academy of Pediatrics (AAP) aims to provide guidance with 3 separate age-based algorithms for the evaluation and management of the well-appearing febrile infant [4]. These guidelines were made possible by the recent PECARN, Step by Step, and other studies and the invaluable information they have provided [5-7].

Who’s included?

  • Well-appearing febrile infants
    • The AAP acknowledges that clinician experience is likely the best determinate of what is “well-appearing”, further admitting that there is no measure or definition of either “experience” or “well-appearing”
  •  Febrile
    • Rectal temperatures of  38.0C or 100.4F at home in the past 24 hours or determined in a clinical setting
    • Subjective fevers at home are excluded
  •  Gestation
    • Between 37-42 weeks
    • Premature infants excluded
  • Age
    • Days 8 to 60 and have been discharged home following birth

Who is not included?

  • Preterm or infants with congenital/chromosomal abnormalities
  • Infants with focal bacterial infections
  • Cellulitis, omphalitis, septic arthritis, osteomyelitis
  •  Bronchiolitis
    • With or without a positive RSV test
  •  Immunocompromised
    • Either suspected or known deficiency
  • Immunizations in the previous 48 hours

It should also be noted that the AAP has named the following as high-risk inflammatory markers that will be referenced in the soon-to-be-discussed guidelines [4,5].

  • Temperature >101.3F (38.5C)
  • C-reactive protein (CRP) > 20 mg/L
  • Procalcitonin >0.5 ng/mL
  • Absolute neutrophil count (ANC) >4000 mm3  (or 5200 mm3 if your facility does not have procalcitonin available)

The Groups

While the AAP makes the distinction of an age 0-7 days group from the age 8-21 days, they provide no specific recommendations about emergency department (ED) management in the youngest group [4]. Despite this, these infant groups are likely best evaluated and managed similarly in the ED:

  • Urinalysis (UA) +/- urine culture if indicated by UA
  • Blood culture
  • Lumbar puncture (LP)
    • Cell count, Gram stain, glucose, protein, bacterial culture, and enterovirus PCR (if available)
  • Admission

Inflammatory markers are not required to determine ED management in this age group but may guide inpatient clinicians.

Treatment

  • Ampicillin IV or IM
  • Ceftazidime IV or IM or gentamicin IV or IM

The addition of acyclovir to IV antibiotics depends on the following risk factors which increase the likelihood of HSV:

  • Maternal genital HSV lesions or fever 48 hours before or after delivery
  • Infants with vesicles, seizures, hypothermia, mucous membrane ulcers
  • CSF pleocytosis with a negative Gram stain result
  • Leukopenia, thrombocytopenia, or elevated AST/ALT levels

Although many febrile infants in this group will still require a full evaluation for sepsis, there are some new alternatives in patients meeting certain criteria. At the minimum, all 22-28 day old infants will need:

  • UA +/- culture
  • Blood culture
  • Inflammatory markers (ANC, CRP, procalcitonin)

Further management of a well-appearing infant in this group can be based on the following pathways:

    1. If UA positive with negative inflammatory markers
      • LP may be performed but is not required
      • IV antibiotics and admission are required regardless
    2. If UA negative with negative inflammatory markers, then there are 2 options
      • Perform LP
        • If LP negative, then the patient can be given a dose of parenteral antibiotics and discharged home with close follow-up in 24 hours.
        • If LP is traumatic or pleocytosis is present, administer antibiotics and admit.
      • Defer LP
        • Antibiotics may be administered, but the patient should be admitted.
    3. If UA negative and ANY positive inflammatory marker (procalcitonin > 0.5 mg/mL, CRP >20 mg/L, ANC >4000, or temperature >101.3F), LP is required
      1. If LP positive
        • Admit with IV antibiotics
      2. If LP negative
        • Admit +/- antibiotics, OR
        • Discharge home after one dose of parenteral antibiotic with 24-hour follow-up

Treatment

  • Same antibiotic options as the day 0-21 infants

The nuances of this group’s decision tree revolve around the inflammatory markers.

Each infant in this group should have the following completed:

  • Urinalysis
  • Blood Cultures
  • Inflammatory markers (CRP, ANC, and procalcitonin)

If everything is negative (UA & inflammatory markers):

  • Infants may be discharged home without antibiotics and with close follow-up within 36 hours.

If inflammatory markers are negative:

  • Infants with a positive urinalysis and negative inflammatory markers may be treated with oral antibiotics.
    • They may be either admitted to the hospital for observation or discharged with 24-hour follow-up.
    • No LP needed.

If inflammatory markers are positive:

  • A LP may be performed if the clinician feels it necessary but is not required.
    • If performed and CSF is negative the infant may be discharged with close follow-up.
    • Given high risk of bacteremia with elevated inflammatory markers in this age group, a dose of parenteral antibiotics prior to discharge is appropriate.
  • If LP deferred:
    • Administer parenteral antibiotics, and likely admit to hospital.
    • The caveat to this is if they have viral testing completed that is positive and are well appearing.
      • Example: A 48-day-old infant presents with a fever of 100.6F, CRP of 22 mg/L, and otherwise normal procalcitonin, ANC, and UA. The mother reports that an older brother has had a runny nose. Viral PCR testing is positive for rhinovirus. Seeing as the UA is negative, the infant appears well with a positive viral test, they may go home with shared decision-making and close outpatient follow-up, despite a positive inflammatory marker (CRP 22 mg/L) [3].

Treatment

Urinary Tract Infection:

  • Ceftriaxone (IV/IM) or cephalexin/cefixime as oral options.

Concern for Bacteremia/Meningitis:

  • Ceftriaxone + vancomycin
  • May add acyclovir for the above-mentioned antiviral treatment indications.

What should be done if the viral panel is positive?

  • Children 29 days or older with fever from a documented viral source can be managed according to their clinical presentation and can go outside the algorithm.
  • This requires a documented positive viral swab and not just a presentation consistent with a viral syndrome.
  • UTI is common in this age group, and a UA should be obtained [8].

Conclusion

Over the course of nearly the last half century there has been a lack of clear evidence-based guidelines in evaluating the young febrile infant [1]. Although serious bacterial infections in these young, febrile infants are uncommon, studies show that in the first month of life, bacteremia can be present in nearly 3% of febrile infants, with bacterial meningitis occurring in about 1% [2]. The absence of consensus regarding management has led to significant costs due to hospitalizations and their associated iatrogenic complications [9]. In the movement to create new recommendations, shifting epidemiology pushed changes in previous guidelines with a new focus on the use of the now widely available inflammatory markers [10].  With the advent of multiple large-scale studies and the recent improvements in lab testing, the newly updated AAP guidelines provide recommendations on how to manage this challenging population [4-7].

Take Home Points

  • These management strategies can only be used in WELL-APPEARING infants – if they’re ill-appearing, do a complete workup.
  • Evaluation of febrile infants 0-21 days remains the same – do everything (blood culture, UA +/- culture, LP with CSF studies), give antibiotics, and admit.
  • For those infants 22-28 days, get the UA, blood culture, and inflammatory markers to guide management.
    • Not all febrile infants in the 22-28 day subset need an LP, though it should still be obtained in certain clinical circumstances, and discussed between  provider and parents in other situations
  • In infants ≤28 days, a complete workup is still needed even if a viral source is present.
  • Febrile infants 29-60 days old may be sent home after a negative workup with close follow-up.

References:

    1. Roberts KB. Young, febrile infants: a 30-year odyssey ends where it started. JAMA. 2004 Mar 10;291(10):1261-2. PMID: 15010450.
    2. Biondi EA, Lee B, Ralston SL, et al. Prevalence of Bacteremia and Bacterial Meningitis in Febrile Neonates and Infants in the Second Month of Life: A Systematic Review and Meta-analysis.JAMA Network Open. 2019 Mar; 2(3). PMID: 30901044.
    3. Baker MD, Avner JR, Bell LM. Failure of infant observation scales in detecting serious illness in febrile, 4- to 8-week old infants. Pediatrics. 1990;85(6):1040–1043. PMID: 2339027
    4. Pantell RH, Roberts KB, Adams WG, et al. Clinical Practice Guideline: Evaluation and Management of Well Appearing Febrile Infants 8 to 60 Days Old. Pediatrics. 2021;148(2):e2021052228. PMID: 34281996
    5. Kuppermann N, Dayan PS, Levine DA, et al. A Clinical Prediction Rule to Identify Febrile Infants 60 Days and Younger at Low Risk for Serious Bacterial Infections. JAMA Pediatr. 2019;173(4):342-351. PMID: 30776077
    6. Gomez B, Mintegi S, Bressan S, et al. Validation of the “Step-by-Step” approach in the management of young febrile infants. The Journal of Pediatrics. 2016 Aug; 138(2):e20154381. PMID: 27382134
    7. Nguyen THP, Young BR, Poggel LE, et al. Roseville Protocol for the Management of Febrile Infants 7-60 Days. Hosp Pediatr. 2020 Dec 17:hpeds.2020-0187. PMID: 33334815
    8. Shaikh N, Morone NE, Bost JE, Farrell MH. Prevalence of urinary tract infection in childhood: a meta-analysis. Pediatr Infect Dis J. 2008;27(4):302-308. PMID: 18316994
    9. Coyle C, Brock G, Wallihan R, Leonard JC. Cost Analysis of Emergency Department Criteria for Evaluation of Febrile Infants Ages 29 to 90 Days. J Pediatr. 2021 Apr;231:94-101.e2. doi: 10.1016/j.jpeds.2020.10.033. Epub 2020 Oct 31. PMID:33130155.

    Milcent K, Faesch S, Gras-Le Guen C, et al. Use of Procalcitonin Assays to Predict Serious Bacterial Infection in Young Febrile Infants [published correction appears in JAMA Pediatr. 2016 Jun 1;170(6):624].JAMA Pediatr. 2016;170(1):62-69. doi:10.1001/jamapediatrics.2015.3210 PMID: 26595253

SAEM Clinical Images Series: An 8-year-old Male with Dysuria

dysuria

An 8-year-old Caucasian male with no significant past medical history presented to the pediatric emergency department (ED) with complaints of three days of abdominal pain and dysuria, accompanied by nausea, vomiting, and poor oral intake. The patient had previously presented to his pediatrician, where he was found to have microscopic hematuria and subsequently sent to the ED. Microscopic hematuria and increased abdominal pain in the ED prompted a point of care ultrasound (POCUS).

GI: Soft on palpation, normal bowel sounds, tender to palpation at midline below the umbilicus.

GU: No trauma or erythema of the penis.

Remaining exam wnl.

Urinalysis (UA): Yellow; Cloudy; Ketones: 15; Protein >=300; Leukocyte esterase: large; Nitrite: positive; WBC/HPF: Packed; RBC/HPF:51-100

Urine Culture: >100,000 staphylococcus CFU/mL

The most likely site of abnormality in this patient is the urethra. Image 1 shows massive bilateral hydronephrosis while image 2 shows hydroureter and bladder wall thickening. This presentation in a male, together with the lab findings suggestive of a UTI, should raise concerns for posterior urethral valves (PUV). PUV, a congenital obstruction of the urethra, is one of the most common causes of lower urinary tract obstruction in males. [1]

The next step in management for patients with probable PUV is a referral to a urologist for a voiding cystourethrogram (VCUG) and cystoscopy to assess for vesicoureteral reflux and valvular obstruction. Patients who are found to have PUV can then undergo incision and correction of the urethral valve. PUV typically presents in the newborn period in males with a poor urinary stream, urinary tract infections, and other voiding complaints and can be corrected with bladder catheterization or valvular ablation [1,2].

Take-Home Points

  • While rare, PUV should be considered in the differential for any pediatric patient presenting with urinary tract-related complaints, abdominal pain, and unexplained nausea or vomiting, particularly in school-aged males.
  • A school-aged male without an underlying diagnosis presenting to the hospital with a UTI should prompt clinicians to look for underlying predisposing conditions, such as PUV – an undertaking in which bedside ultrasound can be extremely useful.
  • Point of care ultrasound (POCUS) is a tool used in real time by emergency physicians to provide evidence for hydronephrosis, which can lead to the diagnosis of PUV.

  • Hodges SJ, Patel B, McLorie G, Atala A. Posterior urethral valves. ScientificWorldJournal. 2009 Oct 14;9:1119-26. doi: 10.1100/tsw.2009.127. PMID: 19838598; PMCID: PMC5823193.
  • Shields LBE, White JT, Mohamed AZ, Peppas DS, Rosenberg E. Delayed Presentation of Urethral Valves: A Diagnosis That Should Be Suspected Despite a Normal Prenatal Ultrasound. Glob Pediatr Health. 2020 Oct 15;7:2333794X20958918. doi: 10.1177/2333794X20958918. PMID: 33117862; PMCID: PMC7570289.

SAEM Clinical Images Series: My Shoulder Hurts

An 18-year-old male presents to the Emergency Department (ED) with right shoulder pain after wrestling with his brother. He heard a “pop,” and has been having pain along his right clavicle and shoulder since. He is unable to move his right shoulder. No numbness, tingling, or weakness in his arm or hand. No dysphagia, stridor, or shortness of breath. No medical or surgical history. He has no history of shoulder dislocation or fractures.

Vitals: HR 71; BP 139/77; RR 18; O2 sat 98% on RA

General: Uncomfortable appearing young man with his right arm held in adduction and internal rotation.

Respiratory: Clear breath sounds without stridor or shortness of breath.

CV: Heart is regular rate and rhythm without murmur, rub or gallop. Radial pulses are 2+ bilaterally, with brisk capillary refill.

MSK: Right shoulder without gross deformity. Right sternoclavicular joint is boggy, tender to palpation, and asymmetric when compared to the left. Limited active range of motion due to pain.

Neuro: Grip strength is 5/5 bilaterally, with intact motor and sensation demonstrated in the radial, median and ulnar distributions.

Shoulder and clavicular x-ray: No fracture or dislocation.

Point-of-care ultrasound: Clavicle (blue circle) posterior to the sternum (red square) at the sternoclavicular joint.

This is a posterior sternoclavicular dislocation. These dislocations are rare and are often the result of indirect lateral shoulder compression. It takes a high level of suspicion to diagnose as the physical exam and initial x-ray may be unrevealing. These patients require admission with emergent orthopedic consultation as there is a 30% chance of developing life-threatening complications due to damage of underlying structures including the trachea, esophagus, innominate artery and vein, and thoracic duct. Closed reduction in the operating room (OR) is typically the first line of treatment, with open reduction and internal fixation with cardiothoracic surgery consult available as the secondary treatment option.

CT with contrast is the imaging modality of choice, showing the sternoclavicular relationship in detail and allowing for evaluation of the underlying vascular and mediastinal structures. If unavailable, an oblique “serendipity view” x-ray may allow for better evaluation of the sternoclavicular joint than a standard shoulder or clavicle series. Additionally, point-of-care ultrasound can be an imaging modality that allows for quick and reliable bedside evaluation and diagnosis of sternoclavicular dislocation.

Take-Home Points

  •  Consider posterior sternoclavicular dislocation for those with traumatic shoulder or clavicular pain, particularly when the initial x-ray is unrevealing.
  • Posterior sternoclavicular dislocation can have subtle exam findings that are easily missed if a high level of suspicion is not maintained.
  • Posterior sternoclavicular dislocations can result in damage to underlying structures and require emergent orthopedic consultation for reduction in the OR with cardiothoracic backup available.

  • Bengtzen RR, Petering RC.Point-of-Care Ultrasound Diagnosis of Posterior Sternoclavicular Joint Dislocation. The Journal of Emergency Medicine. (2017) Volume 52,(4) 513-515. https://https://doi.org/10.1016/j.jemermed.2016.11.001.
  • Deren ME, Behrens SB, Vopat BG, Blaine TA. Posterior sternoclavicular dislocations: a brief review and technique for closed management of a rare but serious injury. Orthop Rev (Pavia). 2014 Mar 12;6(1):5245. doi: 10.4081/or.2014.5245. PMID: 24744842; PMCID: PMC3980158.
  • Grantier III RL, Craddock P. Recanting Impressions: Posterior Sternoclavicular Joint Dislocation. EMResident, Published 2018 June 6.
  • Roepke C, Kleiner M, Jhun P, Bright A, Herbert M. Chest Pain Bounce-Back: Posterior Sternoclavicular Dislocation. Ann Emerg Med. 2015 Nov;66(5):559-61. doi: 10.1016/j.annemergmed.2015.09.015. PMID: 26497437.

By |2023-03-18T23:11:47-07:00Mar 20, 2023|Orthopedic, SAEM Clinical Images|

SAEM Clinical Images Series: Incidental Finding on Bedside Echo

echo

A 48-year-old female with a past medical history of opioid use disorder on suboxone presents with abdominal pain for one day. The patient developed sharp diffuse upper abdominal pain the evening prior to arrival that resolved. The pain recurred again today and was associated with bilious emesis. The patient notes persistent upper abdominal pain with paroxysmal exacerbation. She has a history of a hysterectomy, but no other abdominal surgeries. No history of gallstone pathology.

Vitals: HR 38; BP 120/63; RR 14; SpO2 100%

HEENT: No jugular venous distention, no scleral icterus.

CV: Normal S1, S2, regular rhythm.

Respiratory: Clear breath sounds bilaterally.

Abdominal: Mild tenderness to palpation in the epigastrium, without rebound or guarding.

Extremities: Warm and well perfused, no edema.

White blood cell (WBC) count: 11

Alk phos: 123

Total Bilirubin: 0.5

Lipase: 24

Troponin: 0

Lactate: 1

An echo was performed for bradycardia and a brief episode of hypoxia in the emergency department. A large, tethered mass is seen likely originating from the left atrium. This finding is most consistent with an atrial myxoma, though it can also represent a clot. The patient was ultimately diagnosed with gallstone ileus and an atrial myxoma.

Take-Home Points

  • Myxomas are the most common type of cardiac mass. They occur more commonly in females, arising between the fourth and sixth decade of life. They are most commonly located in the left atrium.
  • Patients can experience obstructive and thromboembolic symptoms. Distal embolic events can cause neurologic deficit, visceral ischemia, STEMI, and limb ischemia amongst other critical presentatations.
  • Bernatchez, J., Gaudreault, V., Vincent, G., & Rheaume, P. (2018). Left atrial myxoma presenting as an embolic shower: a case report and review of literature. Annals of vascular surgery, 53, 266-e13.
  • Nguyen T, Vaidya Y. Atrial Myxoma. 2022 Jul 4. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 32310500.

11 Tips to Improve Epistaxis Management in the Emergency Department

epistaxis 11 tips

Managing epistaxis is often challenging, time-consuming, and takes practice. Even under the best circumstances, epistaxis often results in return visits for rebleeding and poor outcomes. Rarely should you do “nothing” for adults who present to the ED with or following epistaxis. If it produced enough blood to seek care (even without hemodynamic compromise), epistaxis frequently recurs even if currently resolved. This is a less true in pediatric patients. A careful and comprehensive evaluation is essential in both populations, whether epistaxis is ongoing.

The following 11 pearls with a bonus tip should help you avoid common pitfalls, improve outcomes, and increase both patient and physician satisfaction:

  1. Wear proper protection during the procedure, including a face shield and gown. Nasal manipulation often causes patients to cough or sneeze, resulting in blood spray.
  2. Prepare your equipment in advance. Work with your nurses or techs to develop a policy where it is placed at the bedside when the patient is roomed. A bright, focused light is essential, ideally as a headlamp so both hands are free. This way, no assistant is needed. Cordless headlamps are easier to use but should be charged after each use.
  3. Although an elevated blood pressure or hypertension can worsen epistaxis, acute treatment is generally not required. Help your patient relax by establishing a calm presence, demonstrating confidence, and explaining your approach in advance. Done well, these actions are often sufficient to reduce their blood pressure.
  4. Have your patient slowly but firmly blow their nose to remove any clots that have formed, which not only will reduce or prevent medications from absorbing but will also interfere with visualization. After this, have your patient hold firm pressure with a clip or clamp for at least 15 minutes while you gather your supplies. If available, spray a vasoconstrictor such as oxymetazoline into the affected nostril(s) prior to holding firm pressure.
  5. Tight packing of your selected medications and your preferred method of their administration (e.g., cotton balls, pledgets, swabs) is crucial, as the vasoconstrictor/anesthetic won’t be well absorbed without direct contact and pressure. Tight packing also helps tamponade any bleeding. It may be necessary to pack both nasal cavities to achieve adequate tamponade because the septum is mobile.
  6. Avoid touching the nasal septum when using the nasal speculum. This is likely the area of bleeding and can be sensitive. Carefully insert the tip along the inner edge of the ala, open the speculum, then pull out with gentle traction to provide optimal visualization with your high-intensity light.
  7. If using silver nitrate to cauterize a friable area or visible vessel, ensure the field is dry and the site is anesthetized. Chemical burns are painful, and this area is sensitive. Using light pressure with a gentle rolling motion, cauterize an area slightly wider than the area of bleeding, limiting the number of repeat cautery attempts.
  8. If using commercial nasal packing that is too large (they come in several sizes, although some EDs stock only the largest sizes), shorten and trim the tip at an angle. Apply a topical antibiotic ointment to the nasal tampon to aid with insertion; this serves both as an antibiotic and lubricant. In some situations, using a hemostatic agent with the nasal tampon or in the nasal cavity may prove helpful. Follow the contour and direction of the nasal passage to ease insertion and minimize pain. Some patients poorly tolerate the placement of nasal packing and/or the packing itself.
  9. Add 1-3 ccs of water or saline using a syringe (no needle) to wet the packing following insertion. This allows the packing to expand and soften. Be prepared for a small amount of leaking, coughing, or spitting. If using an inflatable device for packing, be prepared to inflate the balloon to the optimal size with air or appropriate fluid (depending on the device).
  10. Do not immediately discharge a patient after successful epistaxis management. Observe your patient for a post-procedure recheck to ensure the bleeding remains well-controlled, your patient is tolerating the packing or balloon, and the vital signs are stable. This can be 15–30 minutes (or longer) depending on the amount of blood loss, the findings, the procedure, and your patient’s comorbidities.
  11. Know how and when to call for help. Call for help early in situations such as hemodynamic compromise due to blood loss, hypoxia or acute cardiopulmonary distress, post-surgical epistaxis, bleeding tumors (especially those that have been irradiated), patients with underlying bleeding disorders, an inability to control the bleeding, or other circumstances that make poor outcomes more likely.

Charting Bonus Tips: You can complete your patient’s discharge paperwork while waiting for the pre-procedure topical anesthetic/vasoconstrictor to take effect. During the post-procedure observation period, complete your chart and document your findings, the procedure, whether the patient tolerated the procedure, and any complications while observing your patient and awaiting the final set of vital signs before discharge.

Additional recommended reading

  • Gottlieb M, Long B. Managing Epistaxis. Ann Emerg Med. 2023;81(2):234-240. doi:10.1016/j.annemergmed.2022.07.002. PMID 36117013

Updated March 23, 2023

By |2023-03-23T23:41:34-07:00Mar 3, 2023|ENT|

ALiEM AIR Series | Orthopedics Lower Extremity Module

AIR Orthopedics Lower Extremity badge module

 

Welcome to the AIR Orthopedics Lower Extremity Module! After carefully reviewing all relevant posts in the past 12 months from the top 50 sites of the Social Media Index, the ALiEM AIR Team is proud to present the highest quality online content related to related to neurologic emergencies in the Emergency Department. 4 blog posts met our standard of online excellence and were approved for residency training by the AIR Series Board. More specifically, we identified 1 AIR and 3 Honorable Mentions. We recommend programs give 2 hours of III credit for this module.

AIR Stamp of Approval and Honorable Mentions

In an effort to truly emphasize the highest quality posts, we have 2 subsets of recommended resources. The AIR stamp of approval is awarded only to posts scoring above a strict scoring cut-off of ≥30 points (out of 35 total), based on our scoring instrument. The other subset is for “Honorable Mention” posts. These posts have been flagged by and agreed upon by AIR Board members as worthwhile, accurate, unbiased, and appropriately referenced despite an average score.

Take the AIR Orthopedics Lower Extremity Module at ALiEMU

Interested in taking the AIR quiz for fun or asynchronous (Individualized Interactive Instruction) credit? Please go to the above link. You will need to create a free, 1-time login account.

Highlighted Quality Posts: Orthopedic Lower Extremity Emergencies

SiteArticleAuthorDateLabel
PedEM MorselsLisfranc Injuries in Pediatric PatientsChristyn Magill, MD3/18/22AIR
Rebel EMCompartment SyndromeAnand Swaminathan, MD5/4/22HM
EM CasesEmergency Orthopedics Differential: SCARED OF Mnemonic – When X-rays LieArun Sayal, MD and Yatin Chadha, MD10/25/22HM
PedEM MorselsTibial Shaft Fractures in ChildrenSean Fox, MD5/6/22HM

(AIR = Approved Instructional Resource; HM = Honorable Mention)

 

If you have any questions or comments on the AIR series, or this AIR module, please contact us! More in-depth information regarding the Social Media Index.

Thank you to the Society of Academic Emergency Medicine (SAEM) and the Council of EM Residency Directors (CORD) for jointly sponsoring the AIR Series! We are thrilled to partner with both on shaping the future of medical education.

SAEM Clinical Images Series: A Rare Cause of Post-traumatic Neck Pain

neck pain

A 15-year-old male presents to the pediatric Emergency Department (ED) for evaluation of neck pain for three weeks. The patient is vague as to the development of his symptoms, but his mother reveals patient was assaulted by peers three weeks ago and has had progressively worsening neck pain and stiffness. The patient states symptoms have gotten to the point where he is unable to turn his head but denies fevers, chills, nausea, vomiting, focal weakness, or sensory changes.

Vitals: Temp: 99.4°F; HR 80; RR 18; SpO2 98% on room air

Constitutional: No distress, sitting rigidly in bed.

Neck: Cervical midline tenderness noted with rigid neck and severe tenderness with manipulation, no swelling, erythema, or masses noted.

HEENT: No pharyngeal injection, no visible masses in the oropharynx, no trismus.

CV: Regular rate and rhythm, no murmurs, rubs, or gallops. Good peripheral perfusion.

Abdomen: Soft, non-distended and non-tender.

Neuro: 5/5 motor function to the bilateral upper and lower extremities, normal sensory examination, cranial nerves intact. Negative Kernig’s sign.

White blood cell (WBC) count: 9.5

Platelets: 639

Glucose: 105

CRP: 128

ESR: 100

CSF: Color- Clear; Nucleated Cells- 1; Protein- 25; Glucose- 6

This patient was found to have septic arthritis of the atlantooccipital (AO) joint, noted on the CT shown above, with joint space narrowing and erosion (red arrow) of the right AO joint with associated soft tissue swelling and effusion. Seen on the MRI is further confirmation of the findings suggested on CT of septic arthritis, with additional noting of attenuation of the prevertebral space of C2/C3 suggestive of phlegmon, bilateral AO joint arthritis, and involvement of the atlantoaxial joint, all of which can be seen on the above sagittal cut of the MRI, with the most notable being the pre-vertebral phlegmon (red arrow).

Septic arthritis of the facet joints is a rarity, particularly in pediatrics and in the cervical spine; case reports largely describe a lumbar location in elderly adults with predisposing comorbidities (intravenous drug use, diabetes, immunosuppression) for spontaneous infection. There are no published case reports of traumatic, pediatric AO joint septic arthritis. This patient developed septic arthritis following trauma. As with peripheral septic arthritis, the most common cause is hematogenous spread, and even non-penetrating trauma can predispose a joint to infection as likely occurred in this case. Septic arthritis of the facet joints presents similarly to spondylodiscitis, generally with fever, neck or back pain, and elevated inflammatory markers such as CRP/ESR. If left untreated, it can be a dangerous and refractory cause of sepsis that leads to deadly complications such as concomitant epidural access formation. Oftentimes patients are initially misdiagnosed and re-present multiple times as the preferred image modality for diagnosis is MRI which is not always readily available or ordered. In general, treatment generally includes weeks-long courses of intravenous (IV) antibiotics, though this patient was discharged on oral antibiotics after significant symptomatic improvement on IV therapy after four days.

Take-Home Points

  • Septic arthritis of the cervical facet joints, namely the AO joint, is a rare cause of neck pain in patients with fever and elevated inflammatory markers, and can present after trauma. Generally, it is hematogenously spread and associated with comorbidities such as diabetes, intravenous drug use, and immunosuppression, it should be considered in patients with refractory symptoms or in which there is strong suspicion as it can have dangerous complications.
  • The preferred imaging modality for diagnosis is MRI, though CT can be useful in making the diagnosis radiographically. Treatment generally consists of weeks of IV antibiotics.

  • Sethi S, Vithayathil MK. Cervical facet joint septic arthritis: a real pain in the neck. BMJ Case Rep. 2017 Aug 3;2017:bcr2016218510. doi: 10.1136/bcr-2016-218510. PMID: 28775081; PMCID: PMC5612571.
  • Narváez J, Nolla JM, Narváez JA, Martinez-Carnicero L, De Lama E, Gómez-Vaquero C, Murillo O, Valverde J, Ariza J. Spontaneous pyogenic facet joint infection. Semin Arthritis Rheum. 2006 Apr;35(5):272-83. doi: 10.1016/j.semarthrit.2005.09.003. PMID: 16616150.

Go to Top