IDEA Series: DIY Suture Kit Station

laceration suture repair closure

In medical training there is a lack of simulation based activities including procedural labs. Suturing is a critical skill for trainees to master in the emergency department. However, supervised practice is needed prior to suturing a real patient for the first time. This innovation allows early trainees to master suturing while on shift, using easy to find materials, which increases procedural competency and confidence. This activity allows the teacher to assess and correct the trainees procedural skills prior to attempting to suture a real patient.

Name of innovation

  • This Do-It-Yourself Suture Kit Station incorporates easy to find materials available in every emergency department, allowing early trainees to master suturing prior to suturing real patients.

Learners targeted

  • Medical students and early trainees who need suture practice

General group size

  • One-on-one student training is ideal, but can have multiple students who can practice using multiple suturing stations
  • If teacher unable to instruct while on shift, trainees can be shown a suture training video and practice alongside the video

DIY suture training kit for laceration repair

Materials needed

  • Blue chuck pad
  • Paper/cloth tape
  • Scalpel
  • Suture material
  • Suture kit

More detailed description of the activity and how it was run

  • Make the DIY Suture Kit Station (see above video):
    • Place a thick chuck pad on a flat sturdy surface.
    • Apply cloth tape to the entire surface of the chuck, and tape over the chuck. This is now the suturing pad.
    • Use a scalpel to make an incision to the pad.
    • Use the back blunt end of the scalpel to ‘fluff’ up incision edges to make laceration.
  • Use a laceration repair kit and suture to close the laceration.
  • Instruct the trainee on proper suturing technique on the suture station (or show a suture training video)
  • Have the trainee continue practicing until adequate comfort and proficiency level is achieved
  • Suture real patient!

Lessons learned, especially with regard to increasing resident and program buy in

  • Procedural skills require much repetition to gain proficiency. This is best done with video tutorials, supervision, and deliberate practice.
  • Practicing in a simulated environment greatly improves skill and confidence in real clinical practice.

Educational theory behind the innovation including specifics/styles of teaching involved

  • Simulation practice increases procedural competency.
  • Practicing on shift allows trainees to reach the number of repetitions required to gain mastery in suturing, Routt [1] showed that the number of repetitions required to gain proficiency was 41 times.
  • Competency in suturing is required even when cases are low. Wongkietachorn et al. demonstrated that tutoring suturing improves the trainees’ skillset. A practice suture kit helps improve retention for real-life scenarios [2].

Pearls

  • This DIY suture pad station technique is easily available and inexpensive.
  • To improve suturing techniques and enhance skill retention, medical students and early trainees need to learn with guided supervision on simulated task trainers.

 

References

  1. Routt E, Mansouri Y, de Moll EH, Bernstein DM, Bernardo SG, Levitt J. Teaching the Simple Suture to Medical Students for Long-term Retention of Skill. JAMA Dermatol. 2015 Jul;151(7):761-5. doi: 10.1001/jamadermatol.2015.118. PMID: 25785695.
  2. Wongkietkachorn A, Rhunsiri P, Boonyawong P, Lawanprasert A, Tantiphlachiva K. Tutoring Trainees to Suture: An Alternative Method for Learning How to Suture and a Way to Compensate for a Lack of Suturing Cases. J Surg Educ. 2016 May-Jun;73(3):524-8. doi: 10.1016/j.jsurg.2015.12.004. Epub 2016 Feb 20. PMID: 26907573.
By |2021-10-08T10:19:05-07:00Oct 15, 2021|IDEA series, Trauma|

EMRad: Can’t Miss Adult Traumatic Hip and Pelvis Injuries

 

Have you ever been working a shift at 3 AM and wondered, “Am I missing something? I’ll just splint and instruct the patient to follow up with their PCP in 1 week.” This is a reasonable approach, especially if you’re concerned there could be a fracture. But we can do better. Enter the “Can’t Miss” series: a series organized by body part that will help identify injuries that ideally should not be missed. This list is not meant to be a comprehensive review of each body part, but rather to highlight and improve your sensitivity for these potentially catastrophic injuries. We’ve already covered the adult elbow, wrist, shoulder, ankle/foot, and knee. Now: the hip.

 

(more…)

By |2021-09-01T17:23:13-07:00Sep 3, 2021|Orthopedic, Radiology, SplintER, Trauma|

SplintER Series: One Big Bounce

 

A 5-year-old boy presents with right leg pain and a limp. His parents report it started after he was bouncing on the trampoline with his older sibling but they did not notice any specific trauma. He has tenderness over his proximal shin with no obvious injury. You suspect a fracture and obtain x-rays of the right knee (Figure 1).

Figure 1. AP and Lateral x-rays of the right knee. Case courtesy of Dr Andrew Dixon, Radiopaedia.org, rID: 16139

(more…)

EMRad: Can’t Miss Pediatric Elbow Injuries

 

Have you ever been working a shift at 3 am and wondered, “Am I missing something? I’ll just splint and instruct the patient to follow up with their PCP in 1 week.” This can be a reasonable approach, especially if you’re concerned there could be a fracture. But we can do better. Enter the “Can’t Miss” series: a series organized by body part that will help identify common and catastrophic injuries. This list is not meant to be a comprehensive review of each body part, but rather to highlight and improve your sensitivity for these potentially catastrophic injuries. We reviewed the approach to the pediatric elbow previously. Now, the “Can’t Miss” pediatric elbow injuries. (more…)

By |2021-04-10T10:24:46-07:00Apr 5, 2021|EMRad, Orthopedic, Pediatrics, Radiology, Trauma|

EMRad: Radiologic Approach to the Pediatric Traumatic Elbow X-ray

This is EMRad, a series aimed at providing “just in time” approaches to commonly ordered radiology studies in the emergency department [1]. When applicable, it will provide pertinent measurements specific to management, and offer a framework for when to get an additional view, if appropriate. We recently covered the adult elbow, here we will cover the approach to the pediatric elbow.

Learning Objectives

  1. Interpret traumatic pediatric elbow x-rays using a standard approach
  2. Identify clinical scenarios in which an additional view might improve pathology diagnosis

Why the pediatric elbow matters and the radiology rule of 2’s

The Pediatric Elbow

  • 10% of all pediatric fractures involve the elbow [2].
  • Missed injuries can cause significant deformity, pain, or functional/neurologic complications [2].

Before we begin: Make sure to employ the rule of 2’s [3]

  • 2 views: One view is never enough.
  • 2 abnormalities: If you see one abnormality, look for another.
  • 2 joints: Image above and below (especially for forearm and leg).
  • 2 sides: If unsure regarding a potential pathologic finding, compare to another side.
  • 2 occasions: Always compare with old x-rays if available.
  • 2 visits: Bring the patient back for repeat films.

An approach to the traumatic pediatric elbow x-ray

  1. Adequacy / Alignment
  2. Effusions or Fat Pads
  3. Bones, Growth Plates, and Ossification Centers
  4. Consider an additional view

1.   Adequacy / Alignment

2.   Effusions or Fat Pads

  • An anterior fat pad can be normal, but is considered pathologic if excessively prominent (usually around ≥20 degrees from the humerus, or “sail sign”).
  • A clearly visualized posterior fat pad is always pathologic.
  • If either the sail sign or posterior fat pad is present, consider a supracondylar fracture or intra-articular fracture (e.g. lateral condyle fracture )

Sail sign

Figure 1: Measurement of apical angle of the anterior fat pad ≥ 20 degrees, concerning for sail sign. There is also a visible posterior fat pad. Case courtesy of Dr. Ian Bickle, Radiopaedia.org. Annotations by Daniel Ichwan, MD.

3.   Bones, Growth Plates, and Ossification Centers

Elbow x-ray

Figure 2: Lateral and AP x-rays of the elbow demonstrating humerus (green), radius (violet), and ulna (blue). Case courtesy of Dr. Jeremy Jones, Radiopaedia.org. Annotations by Daniel Ichwan, MD.

  • Immature bones with open growth plates (physes) are susceptible to injuries (Salter-Harris fractures) with important growth implications.
    • The Salter-Harris classification is as follows below:
      • Salter-Harris Type 1 (“Slipped”) – epiphysis (part of bone between the growth plate and adjacent joint) separates from metaphysis (neck portion of a long bone).
        • Pearl: Can appear radiographically normal, but tender on physical exam.
        • Requires splinting and ortho follow-up.
      • Type 2 (“Above”) – involves metaphysis (“above the physis”).
        • Requires splinting and ortho follow-up.
      • Type 3 (“Lower”) – involves epiphysis (“below the physis”).
        • Consult orthopedics in the department.
      • Type 4 (“Through”) – involves both the metaphysis and epiphysis.
        • Consult orthopedics in the department.
      • Type 5 (“Erasure”) – crushing of physis. May appear normal or focal narrowing of physis.
        • Consult orthopedics in the department

Figure 3: Salter-Harris Classification. Case courtesy of Dr. Matt Skalski, Radiopaedia.org.

  • Pediatric bones have a stronger periosteum than the underlying incompletely ossified bones.
    • Watch out for bowing, torus, greenstick, or avulsion injuries.
  • Trace each bone’s cortex carefully on both AP and lateral views.
  • Pay close attention to all aspects of the humerus, radius, and ulna.
  • Locate each expected ossification center per the patient’s age.
    • If there is one missing or seemingly prematurely present, consider a fracture.

Figure 4: Ossification centers on (a) AP pediatric elbow x-ray (case courtesy of Dr. Leonardo Lustosa, Radiopaedia.org) and (b) lateral pediatric elbow x-ray. Note that not all ossification centers are visible in this view (case courtesy of Dr. Ian Bickle, Radiopaedia.org. Figure 6 (b) annotations by Daniel Ichwan, MD

 

Table 1: Order and timing of appearance of elbow ossification centers. Some people remember this order by using the mnemonic “CRITOE”: capitellum, radial head, internal (medial) epicondyle, trochlea, olecranon, and external (lateral) epicondyle.

4.  Consider an Additional View

Oblique View

  • When: Sometimes included as the 3rd view in a series
  • Why: This is better at seeing the radiocapitellar joint, medial epicondyle, radioulnar joint, and coronoid process. Consider obtaining this view if there is a high suspicion for a subtle lateral condyle fracture or radial head fracture.

Elbow xray

Figure 6: Lateral oblique x-ray of the elbow. Case courtesy of Dr. Craig Hacking, Radiopaedia.org.

X-rays of Contralateral Elbow

  • Given variation among patients, sometimes it might be necessary to image the contralateral extremity to clarify whether the questionable finding is pathologic or actually normal.

References

  1. Schiller, P. et al. Radiology Education in Medical School and Residency. The views and needs of program directors. Academic Radiology, Vol 25, No 10, October 2018. PMID: 29748045
  2. DeFroda SF, Hansen H, Gil JA, Hawari AH, Cruz AI Jr. Radiographic Evaluation of Common Pediatric Elbow Injuries. Orthop Rev (Pavia). 2017;9(1):7030. Published 2017 Feb 20. PMID: 28286625
  3. Chan O. Introduction: ABCs and Rules of 2. In: ABC of Emergency Radiology. John Wiley & Sons, Ltd; 2013:1-10.
  4. Blumberg SM, Kunkov S, Crain EF, Goldman HS. The predictive value of a normal radiographic anterior fat pad sign following elbow trauma in children. Pediatr Emerg Care. 2011 Jul;27(7):596-600. PMID: 21712751
  5. Black KL, Duffy C, Hopkins-Mann C, Ogunnaiki-Joseph D, Moro-Sutherland D. Musculoskeletal Disorders in Children. In: Tintinalli JE, Stapczynski J, Ma O, Yealy DM, Meckler GD, Cline DM. eds. Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 8e. McGraw-Hill; Accessed December 22, 2020. https://accessmedicine.mhmedical.com/content.aspx?bookid=1658&sectionid=109408415
By |2021-05-15T12:49:15-07:00Mar 19, 2021|EMRad, Orthopedic, Pediatrics, Radiology, Trauma|
Go to Top