Pediatric Emergency Medicine (PEM) Pearls

Created in 2015, this series is hosted by Dr. Jessica Chow and Dr. Josh Bukowski who are authors and editors for this series which focuses on evidence-based care in the realm of pediatric emergency medicine.

 


PEM Pearls: An Approach to Infant Apnea

infant

A 2-day-old female born at 41 weeks presents to the Emergency Department (ED) for an episode of apnea. Her parents noticed she stopped breathing, went limp, and turned blue. They are not sure for how long. The infant has had decreased urine output but is otherwise well without any other symptoms. Mom has an unspecified autoimmune condition and is taking hydroxychloroquine. The pregnancy and birth were largely uneventful. Mom was positive for Group B. Strep, had prolonged rupture of membranes, and was appropriately treated with antibiotics.

Vitals: The infant’s vital signs in the ED are within normal limits except for mild tachypnea.

Initial Exam: Her exam is nonfocal.

Background

Apnea among infants occurs when an infant stops breathing for 20 seconds or longer or stops breathing, for any amount of time, with bradycardia, cyanosis, pallor, and/or hypotonia. The overall incidence of apnea is 1 in 1,000 full-term infants. Infants who are premature (<37 weeks) are at increased risk for apnea; the incidence is almost 100% in infants born less than 28 weeks. Apnea is more common in premature infants due to their immature respiratory systems and physiologic stressors often manifest as respiratory depression in infants [1].

For infants that are actively apneic, the approach is similar to any pediatric resuscitation: ABCs (see ED approach below for management). 

For infants who had an apneic episode that has since resolved, one has more time to think about the differential. 

Differential Diagnosis

Apnea can be benign and physiologic, typically lasting between 5-10 seconds and more often occurring between 2 weeks to 6 months of life. Because physiologic stressors can manifest as respiratory depression in infants, the differential for pathologic apnea is broad. The following are broad categories to consider (similar to “the misfits” mnemonic for the crashing neonate).

  1. Sepsis: UTI, pneumonia, necrotizing enterocolitis, meningitis/encephalitis 
  2. Pulmonary disease: pneumonia, pneumothorax, viral illness  
  3. Congenital heart disease 
  4. Metabolic disease: glucose, inborn errors of metabolism, electrolytes 
  5. Intracranial abnormalities
  6. Non-accidental trauma 
  7. Toxins: carbon monoxide, botulism, maternal opioid use 

It’s important to note that apnea in infants may qualify as a BRUE (brief, resolved, unexplained event). However, in this case, the infant is less than 60 days old. This is NEVER a low-risk BRUE [2]. 

Approach for the ED Provider

For the emergency provider, considering all of this can be overwhelming. Our job is to collect pertinent data, stabilize the infant, and start empiric treatment in order for the inpatient teams to further investigate the exact cause of the apnea. The following is a simplified ED approach: 

Key history questions:

  1. How was the delivery: Was meconium present? Was there prolonged rupture of membranes? 
  2. How was the pregnancy: Did mom get prenatal care? Were there any abnormal results with prenatal testing? What are mom’s medical conditions? Did mom get any treatment during her pregnancy (e.g. PCN for syphilis)?
  3. How is the infant feeding, stooling, and urinating? Are there any other symptoms? 

Key workup to initiate (in bold are items we wouldn’t typically send for adult workups and may be forgotten by ED providers who do not primarily care for children):

  1. VBG, CBC, CMP, ammonia (for metabolic conditions), blood culture, urinalysis, lumbar puncture (if concerned about sepsis)
  2. Respiratory viral panel, pertussis (if endemic and/or area with low vaccination rates)
  3. ECG, chest X-ray (if hypoxic or abnormal clinical exam)
  4. Pre and post-ductal oxygen saturation and four-point blood pressure (for heart disease, primarily coarctation of the Aorta)

Key physical exam findings (undress the patient fully):

  1. Are there bruises or other signs of abuse? 
  2. What is the fontanelle size? How do the pupils appear?
  3. Is there wheezing, rhonchi, or rales on lung auscultation? Are breath sounds equal? Is there increased work of breathing?
  4. Is there abdominal distension or guarding?
  5. Are there rashes? Is there edema in the extremities?

Management for infants currently apneic: ABCs.

  1. Establish access, connect to monitors, and get a full set of vitals (including rectal temperature).
  2. Support the airway. Start with oxygenation and ventilation. Utilize noninvasive pressure ventilation with continuous positive airway pressure (CPAP) or High Flow Nasal Canula (HFNC). Consider intubation if there is no improvement, however, do not jump immediately to intubation as an infant’s respiratory status can quickly change with respiratory support. 
  3. Start CPR if there is no pulse or the pulse is less than 60 beats per minute.
  4. Begin intravenous fluids at 10-20ml/kg (be careful if you have concerns about heart failure). 
  5. Obtain a point of care glucose (and if available, venous blood gas). Consider naloxone if opioid ingestion is possible.

Management for the infants who are not currently apneic: 

  1. Monitor vital signs and support respiration as needed (e.g. nasal cannula, CPAP).
  2. Give empiric antibiotics if there is a concern for sepsis. Remember, avoid ceftriaxone in neonates less than 28 days due to concern for kernicterus. Instead, use ampicillin and gentamicin. Add vancomycin if concerned about MRSA.
  3. Nutritional support – remember that infants have low glucose stores. Start maintenance fluids (D10W (if <28 days) or D5NS +/- KCl).
  4. The NICU may want you to start caffeine and/or theophylline in the ED for treatment for apnea of prematurity.

Disposition is mainly to the Neonatal Intensive Care Unit (NICU).

Case Resolution

While in the ED, the infant desaturates to the 80s with improvement on HFNC. She has a full sepsis workup and is started on empiric antibiotics (ampicillin/gentamicin) and antivirals (acyclovir). The infant is found to have hypoglycemia and metabolic acidosis. Her neurologic, cardiac, and infectious workups are unremarkable and she doesn’t have any apneic/cyanotic episodes while hospitalized. She is discharged home with suspected hypoglycemia from poor feeding as the cause.

Conclusion

  • The workup for apnea in infants is broad and not limited to pulmonary pathology.
  • Remember your ABCs, ask key history questions (prenatal, intrapartum, postpartum), send key diagnostics (including ammonia and pertussis), and collect key physical exam findings (including pre and post-ductal saturation and four-point blood pressure).
  • Call your NICU team early.
  • You will likely not arrive at the cause of the apnea in the ED, but your early workup and empiric treatment (e.g. CPAP, antibiotics) are critical in caring for these infants.

Read more pediatric emergency medicine topics as part of the PEM Pearls Series on ALiEM.

References

  1. Kondamudi NP, Khetarpal S. Apnea In Children. [Updated 2022 Jul 18]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. https://www.ncbi.nlm.nih.gov/books/NBK441894/ .Accessed September 21, 2022.
  2. Tieder JS, Bonkowsky JL, Etzel RA, et al. Brief Resolved Unexplained Events (Formerly Apparent Life-Threatening Events) and Evaluation of Lower-Risk Infants [published correction appears in Pediatrics. 2016 Aug;138(2):]. Pediatrics. 2016;137(5):e20160590. PMID 27244835 

Read more pediatric emergency medicine topics as part of the PEM Pearls Series on ALiEM.

By |2022-09-21T15:16:27-07:00Sep 26, 2022|Pediatrics, PEM Pearls|

PEM Pearls: To Scan or Not to Scan? CT Abdomen in Children with Blunt Torso Trauma

blunt torso traumaAn 18-month-old female with no past medical history is brought in by ambulance after a motor vehicle collision (MVC) at highway speed, restrained in an appropriate car seat. Mom was also brought in after delayed extrication with an obvious femur deformity. EMS reports that the patient had emesis on the scene, was fearful but calm, and has been moving all extremities.

Vitals per EMS: HR 120, BP 100/60, RR 30, SpO2 99%, Temp 36.5 C

Initial Exam:

  • General: crying
  • Neuro: Glasgow Coma Scale (GCS) of 13 (eyes shut unless talked to, crying spontaneously, moving all extremities)
  • MSK: atraumatic chest, erythema on the left leg
  • Abdomen: without tenderness

Blunt Torso/Abdominal Trauma

An intra-abdominal injury (IAI) is considered to be any radiographically or surgically apparent injury to an intra-abdominal structure (urinary tract, gastrointestinal tract, spleen, liver, pancreas, gallbladder, adrenal gland, vasculature, and fascia). An intra-abdominal injury requiring intervention (IAI-I) is any IAI that causes death or requires an intervention such as laparotomy, angiographic embolization, blood transfusion, or even admission for intravenous fluids [1].

Despite our curiosity and desire to diagnose all injuries, emergency medicine teams must focus on recognizing IAI-I and tailor their workup accordingly given the negative consequences of excessive workup and treatment of stable IAIs (e.g., unnecessary splenectomies, hepatectomies, increased length of stay, radiation, and increased medical costs/resources).

Although the incidence of pediatric blunt torso trauma in the United States was 110,525 cases in 2016, the prevalence of IAI has been quoted to be as low as 6.3%; more importantly, the prevalence of IAI-I is less than 2% [1]. Non-pediatric level 1 trauma centers were more likely to use computed tomography (CT) in pediatric trauma patients compared to pediatric trauma centers, even after adjusting for injury severity [2].

Clinical Decision Rule

The Pediatric Emergency Care Applied Research Network (PECARN) conducted a prospective study of over 12,000 children ages 0-18 years presenting to pediatric and general EDs with blunt torso trauma. Significant predictors of IAI-I were low GCS, abdominal tenderness, abdominal wall trauma, thoracic wall trauma, decreased breath sounds, and vomiting. The authors developed a prediction rule with a sensitivity of 97% (93.7, 98.9) and a negative predictive value of 99.9% (99.7, 1.00) [1]. External validation had similar sensitivity (99% 96-100%) reinforcing the utility of this clinical decision rule (CDR) in identifying low-risk individuals and decrease the use of CT [4].

In comparison to other CDRs, this rule does not include a gestalt variable but outperforms clinical gestalt with a lower miss rate (6 compared to 23) [5]. Of note, this prediction rule is not a two-way tool and was created only to determine individuals at low risk of IAI-I, rather than to assist providers in deciding who needs a CT scan.

IAI

Adapted from Holmes JF et al 2013 [1]

Reviewing the cases missed by the prediction rule in the initial study, possible clinical findings that could be captured with adjuncts, such as labs and imaging, include:

  • Gross hematuria
  • Microscopic hematuria (Red Blood Cells on Urinalysis)
  • Elevated AST/ALT
  • Rib fracture

Adjuncts

No single test effectively screens for IAI-I or IAI, but additional testing can increase the index of concern in cases that already have a higher pre-test probability (individuals who have any of the variables factored into the prediction rule). The following adjuncts can be considered for children who are not deemed very low risk.

Labs

  • Hematocrit <30% [3,7-8]
  • AST>200 U/L, ALT>125U/L [3,7, 9-10]
  • Lipase >100 U/L [9,11-12]
  • UA Gross hematuria [12-17]

Focused Assessment with Sonography for Trauma (FAST)

  • The diagnostic role of a FAST in pediatric trauma is less established than in adult trauma [18].
  • Application of FAST increases as provider suspicion for IAI increases [19].
  • As an adjunct to the clinical exam, FAST can be incorporated into decision making for selected cases of increased IAI concern [20].

Chest X-ray (CXR)

  • Injuries noted on a CXR may contribute to increased concern for IAI depending on location, mechanism, and type of injury [21].

Review of Case

Returning to our case, findings of concern include her GCS of 13 and reported emesis. Although it was a high-speed MVC and may represent a more severe mechanism, this variable was not found to be a predictor of IAI-I and should not in isolation inform your evaluation of her abdominal injury.

Application of the PECARN CDR demonstrates that the patient is not at very low risk for IAI-I. Labs and a FAST are performed and medications are given for symptom control.

The patient’s results are:

Labs:

  • HCT 35%
  • Lipase 20 U/L
  • AST 23 U/L, ALT 30 U/L
  • UA: no gross hematuria

FAST: Negative

On re-evaluation after ondansetron and acetaminophen, the patient has a GCS of 15 and is excitedly playing with her new teddy bear from the fire department while sipping apple juice. The patient is safely discharged home with her dad after a very frightening experience without unnecessary costs or radiation.

Take-Home Points

  • While blunt pediatric abdominal trauma has a high incidence, the prevalence of IAI-I is rather low.
  • The PECARN prediction rule for blunt torso trauma can identify patients that are very-low-risk for an IAI-I.
  • Notably, the mechanism of injury is not a predictable factor in determining IAI-I.
  • Clinicians should consider the use of labs, FAST, and CXR for risk stratification of patients that are not found to be very-low-risk.

Read more pediatric emergency medicine topics as part of the PEM Pearls Series on ALiEM.

References

  1. Holmes JF, Lillis K, Monroe D, et al. Identifying children at very low risk of clinically important blunt abdominal injuries. Ann Emerg Med. 2013;62(2):107-116.e2. doi:10.1016/j.annemergmed.2012.11.009. PMID: 23375510
  2. Marin JR, Wang L, Winger DG, Mannix RC. Variation in Computed Tomography Imaging for Pediatric Injury-Related Emergency Visits. J Pediatr. 2015 Oct;167(4):897-904.e3. doi: 10.1016/j.jpeds.2015.06.052. PMID: 26233603
  3. Holmes JF, Sokolove PE, Brant WE, et al. Identification of children with intra-abdominal injuries after blunt trauma. Ann Emerg Med. 2002;39(5):500-509. doi:10.1067/mem.2002.122900. PMID: 11973557
  4. Springer E, Frazier SB, Arnold DH, Vukovic AA. External validation of a clinical prediction rule for very low risk pediatric blunt abdominal trauma. Am J Emerg Med. 2019 Sep;37(9):1643-1648. doi: 10.1016/j.ajem.2018.11.031. PMID: 30502218.
  5. Mahajan P, Kuppermann N, Tunik M, et al. Comparison of Clinician Suspicion Versus a Clinical Prediction Rule in Identifying Children at Risk for Intra-abdominal Injuries After Blunt Torso Trauma. Acad Emerg Med. 2015;22(9):1034-1041. doi:10.1111/acem.12739. PMID: 26302354
  6. Nishijima DK, Yang Z, Clark JA, Kuppermann N, Holmes JF, Melnikow J. A cost-effectiveness analysis comparing a clinical decision rule versus usual care to risk stratify children for intraabdominal injury after blunt torso trauma. Acad Emerg Med. 2013;20(11):1131-1138. doi:10.1111/acem.12251. PMID: 24238315
  7. Taylor GA, Eichelberger MR, O’Donnell R, Bowman L. Indications for computed tomography in children with blunt abdominal trauma [published correction appears in Ann Surg 1992 Jul;216(1):99]. Ann Surg. 1991;213(3):212-218. doi:10.1097/00000658-199103000-00005. PMID: 1998402
  8. Taylor GA, O’Donnell R, Sivit CJ, Eichelberger MR. Abdominal injury score: a clinical score for the assignment of risk in children after blunt trauma. Radiology. 1994;190(3):689-694. doi:10.1148/radiology.190.3.8115612. PMID: 8115612
  9. Streck CJ, Vogel AM, Zhang J, et al. Identifying Children at Very Low Risk for Blunt Intra-Abdominal Injury in Whom CT of the Abdomen Can Be Avoided Safely. J Am Coll Surg. 2017;224(4):449-458.e3. doi:10.1016/j.jamcollsurg.2016.12.041. PMID: 28130170
  10. Streck CJ Jr, Jewett BM, Wahlquist AH, Gutierrez PS, Russell WS. Evaluation for intra-abdominal injury in children after blunt torso trauma: can we reduce unnecessary abdominal computed tomography by utilizing a clinical prediction model?. J Trauma Acute Care Surg. 2012;73(2):371-376. doi:10.1097/TA.0b013e31825840ab. PMID: 22846942
  11. Adamson WT, Hebra A, Thomas PB, Wagstaff P, Tagge EP, Othersen HB. Serum amylase and lipase alone are not cost-effective screening methods for pediatric pancreatic trauma. J Pediatr Surg. 2003;38(3):354-357. doi:10.1053/jpsu.2003.50107. PMID: 12632348
  12. Capraro AJ, Mooney D, Waltzman ML. The use of routine laboratory studies as screening tools in pediatric abdominal trauma. Pediatr Emerg Care. 2006;22(7):480-484. doi:10.1097/01.pec.0000227381.61390.d7. PMID: 16871106
  13. Mee SL, McAninch JW, Robinson AL, Auerbach PS, Carroll PR. Radiographic assessment of renal trauma: a 10-year prospective study of patient selection. J Urol. 1989;141(5):1095-1098. doi:10.1016/s0022-5347(17)41180-3. PMID: 2709493
  14. Morey, Allen F., et al. “Efficacy of Radiographic Imaging in Pediatric Blunt Renal Trauma.” Journal of Urology, vol. 156, no. 6, 1996, pp. 2014–2018., doi:10.1016/s0022-5347(01)65422-3.
  15. Brown SL, Haas C, Dinchman KH, Elder JS, Spirnak JP. Radiologic evaluation of pediatric blunt renal trauma in patients with microscopic hematuria. World J Surg. 2001;25(12):1557-1560. doi:10.1007/s00268-001-0149-6. PMID: 11775191
  16. Santucci RA, Langenburg SE, Zachareas MJ. Traumatic hematuria in children can be evaluated as in adults. J Urol. 2004;171(2 Pt 1):822-825. doi:10.1097/01.ju.0000108843.84303.a6. PMID: 14713834
  17. Levy JB, Baskin LS, Ewalt DH, et al. Nonoperative management of blunt pediatric major renal trauma. Urology. 1993;42(4):418-424. doi:10.1016/0090-4295(93)90373-i. PMID: 8212441
  18. Holmes JF, Gladman A, Chang CH. Performance of abdominal ultrasonography in pediatric blunt trauma patients: a meta-analysis. J Pediatr Surg. 2007 Sep;42(9):1588-94. doi: 10.1016/j.jpedsurg.2007.04.023. PMID: 17848254
  19. Menaker J, Blumberg S, Wisner DH, et al. Use of the focused assessment with sonography for trauma (FAST) examination and its impact on abdominal computed tomography use in hemodynamically stable children with blunt torso trauma. J Trauma Acute Care Surg. 2014;77(3):427-432. doi:10.1097/TA.0000000000000296. PMID: 25159246
  20. Retzlaff T, Hirsch W, Till H, Rolle U. Is sonography reliable for the diagnosis of pediatric blunt abdominal trauma? J Pediatr Surg. 2010 May;45(5):912-5. doi: 10.1016/j.jpedsurg.2010.02.020. PMID: 20438925
  21. Holmes JF, Sokolove PE, Brant WE, Kuppermann N. A clinical decision rule for identifying children with thoracic injuries after blunt torso trauma. Ann Emerg Med. 2002 May;39(5):492-9. doi: 10.1067/mem.2002.122901. PMID: 11973556

Read more pediatric emergency medicine topics as part of the PEM Pearls Series on ALiEM.

PEM Pearls: Intranasal Medications in the Pediatric ER

intranasal medications pediaticFiona is a 6 year old female who presents to your emergency department after falling onto her left hand while racing on the playground. X-ray of the left upper extremity reveals a distal radius fracture with minimal displacement and angulation. You plan to place her arm in a splint and arrange for close orthopedic follow-up. The only problem: Fiona is in a lot of pain, especially with any manipulation of her arm, and Dad is worried that she will not be able to tolerate having a splint placed. You consider reaching for an intranasal medication to help Fiona feel more comfortable and to place the splint in a quick, efficient manner.

(more…)

By |2020-07-20T16:03:22-07:00Jul 20, 2020|PEM Pearls, Tox & Medications|

PEM Pearls: Metered-Dose Inhaler versus Nebulizer

metered-dose inhaler

An 8-year-old is brought in by her parents with shortness of breath and wheezing. She’s been receiving her “rescue inhaler” at home and continues to have symptoms. You examine her and find that she has normal oxygen saturation, mild tachypnea and retractions, and diffuse wheezes. You think that she’s experiencing an acute asthma exacerbation. Given the current pandemic, and a recent report that administering nebulizer treatments to COVID-19 positive patients was correlated with transmission of COVID-19 to healthcare workers [1], what is the best way to treat the patient?

(more…)

By |2020-07-01T07:58:37-07:00Jun 24, 2020|PEM Pearls, Tox & Medications|

PEM Pearls: Chest Radiographs for Shortness of Breath

chest radiograph

Figure 1: Photo by Tim Bish on Unsplash

Paramedics bring in a 5-month-old boy in respiratory distress. He’s crying furiously and has normal tone and color. Thick, copious secretions are coming from his nose. He is tachypneic with diffuse wheezes, crackles, retractions, and nasal flaring. His respiratory rate is 70 and his oxygen saturation is 88% on room air. Would you order a chest radiograph (CXR) for this child?

CXRs are routinely obtained in adults with respiratory symptoms. Children, however, are more sensitive to radiation and can have multiple respiratory infections every year. CXRs can increase cost, length of stay, and may not always be necessary.

This post presents some guidelines on when (and when not) to get a CXR in pediatric patients.

(more…)

By |2020-05-02T11:46:09-07:00May 27, 2020|PEM Pearls, Pulmonary, Radiology|

PEM Pearls: 5 Tips to Demystify Amoxicillin in Pediatric Infections

Amoxicillin is a penicillin derivative antibiotic against susceptible gram positive and gram negative bacteria. It has reasonable coverage for most upper respiratory infections and is used as prophylaxis for asplenia and bacterial endocarditis. This post aims to demystify amoxicillin treatment for common pediatric infections.

(more…)

PEM Pearls: Ultrasound for Diagnosing Occult Supracondylar Fractures

Supracondylar humerus fractures are the most common type of elbow fracture in pediatric patients, most often seen in a fall on an outstretched hand (FOOSH) or a fall on a hyper-extended elbow.​1,2​ If there is no obvious fracture on x-rays, the patient may have an occult fracture; look for secondary radiographic signs including a posterior fat pad sign, an enlarged anterior fat pad or ‘sail sign’, or malalignment. Occult supracondylar fractures (those with initial normal radiographs that are later diagnosed in follow up) make up 2-18% of all the fractures we see in kids.​3​ When x-ray findings are nonspecific but the index of suspicion for fracture remains high, ultrasound may aid in your clinical decision making.

(more…)
By |2019-08-06T22:45:39-07:00Aug 7, 2019|Pediatrics, PEM Pearls|
Go to Top